Monday, November 9, 2015

p. 549: 43, 44, 45, 47, 49, 52, 55, 88, 99, 100

Problem 43
Problem. Evaluate the limit $\lim _{x \rightarrow \infty} x \ln x$ using L'Hôpital's Rule if necessary.
The form is $\infty \cdot \infty$, which is not indeterminate. The limit is ∞.
Solution.

Problem 44

Problem. Evaluate the limit $\lim _{x \rightarrow 0^{+}} x^{3} \cot x$ using L'Hôpital's Rule if necessary.
Solution. The form is $0 \cdot \infty$, which is indeterminate.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x^{3} \cot x & =\lim _{x \rightarrow 0^{+}} \frac{x^{3}}{\tan x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{3 x^{2}}{\sec ^{2} x} \\
& =0
\end{aligned}
$$

Problem 45

Problem. Evaluate the limit $\lim _{x \rightarrow \infty} x \sin \frac{1}{x}$ using L'Hôpital's Rule if necessary.
Solution. The form is $\infty \cdot 0$, which is indeterminate.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x \sin \frac{1}{x} & =\lim _{x \rightarrow \infty} \frac{\sin \frac{1}{x}}{1 / x} \\
& =\lim _{x \rightarrow \infty} \frac{\cos \frac{1}{x} \cdot\left(-\frac{1}{x^{2}}\right)}{-1 / x^{2}} \\
& =\lim _{x \rightarrow \infty} \cos \frac{1}{x} \\
& =\cos 0 \\
& =1 .
\end{aligned}
$$

Problem 47

Problem. Evaluate the limit $\lim _{x \rightarrow 0^{+}} x^{1 / x}$ using L'Hôpital's Rule if necessary.
Solution. The form is 0^{∞}, which is not indeterminate. The limit is 0 .

Problem 49

Problem. Evaluate the limit $\lim _{x \rightarrow \infty} x^{1 / x}$ using L'Hôpital's Rule if necessary.
Solution. The limit is ∞^{0}, which is indeterminate.

$$
\begin{aligned}
\ln \lim _{x \rightarrow \infty} x^{1 / x} & =\lim _{x \rightarrow \infty} \ln x^{1 / x} \\
& =\lim _{x \rightarrow \infty} \frac{1}{x} \cdot \ln x \\
& =\lim _{x \rightarrow \infty} \frac{\ln x}{x} \\
& =\lim _{x \rightarrow \infty} \frac{1 / x}{1} \\
& =0 .
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow \infty} x^{1 / x}=e^{0}=1$.
Problem 52
Problem. Evaluate the limit $\lim _{x \rightarrow \infty}(1+x)^{1 / x}$ using L'Hôpital's Rule if necessary.
Solution. The form is ∞^{0}, which is indeterminate.

$$
\begin{aligned}
\ln \lim _{x \rightarrow \infty}(1+x)^{1 / x} & =\lim _{x \rightarrow \infty} \ln (1+x)^{1 / x} \\
& =\lim _{x \rightarrow \infty} \frac{1}{x} \cdot \ln (1+x) \\
& =\lim _{x \rightarrow \infty} \frac{\ln (1+x)}{x} \\
& =\lim _{x \rightarrow \infty} \frac{1 /(1+x)}{1} \\
& =0
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow \infty}(1+x)^{1 / x}=e^{0}=1$.

Problem 55

Problem. Evaluate the limit $\lim _{x \rightarrow 1^{+}}(\ln x)^{x-1}$ using L'Hôpital's Rule if necessary.

Solution. The form is 0^{0}, which is indeterminate.

$$
\begin{aligned}
\ln \lim _{x \rightarrow 1^{+}}(\ln x)^{x-1} & =\lim _{x \rightarrow 1^{+}} \ln (\ln x)^{x-1} \\
& =\lim _{x \rightarrow 1^{+}}(x-1) \ln \ln x \\
& =\lim _{x \rightarrow 1^{+}} \frac{\ln \ln x}{1 /(x-1)} \\
& =\lim _{x \rightarrow 1^{+}} \frac{\frac{1}{\ln x} \cdot \frac{1}{x}}{-1 /(x-1)^{2}} \\
& =-\lim _{x \rightarrow 1^{+}} \frac{(x-1)^{2}}{x \ln x} \\
& =-\lim _{x \rightarrow 1^{+}} \frac{2(x-1)}{x \cdot \frac{1}{x}+\ln x} \\
& =-\lim _{x \rightarrow 1^{+}} \frac{2(x-1)}{1+\ln x} \\
& =0 .
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 1^{+}}(\ln x)^{x-1}=e^{0}=1$.

Problem 88

Problem. The formula for the amount A in a savings account compounded n times per year for t years at an interest rate r and an initial deposit of P is given by

$$
A=P\left(1+\frac{r}{n}\right)^{n t} .
$$

Use L'Hôpital's Rule to show that the limiting formula as the number of compoundings per year approaches infinity is given by $A=P e^{r t}$.

Solution.

$$
\begin{aligned}
\ln \lim _{n \rightarrow \infty} P\left(1+\frac{r}{n}\right)^{n t} & =\lim _{n \rightarrow \infty} \ln P\left(1+\frac{r}{n}\right)^{n t} \\
& =\ln P+\lim _{n \rightarrow \infty} \ln \left(1+\frac{r}{n}\right)^{n t} \\
& =\ln P+\lim _{n \rightarrow \infty} n t \ln \left(1+\frac{r}{n}\right) \\
& =\ln P+\lim _{n \rightarrow \infty} \frac{\ln P\left(1+\frac{r}{n}\right)}{1 /(n t)} \\
& =\ln P+\lim _{n \rightarrow \infty} \frac{\ln P+\ln \left(1+\frac{r}{n}\right)}{1 /(n t)} \\
& =\ln P+\lim _{n \rightarrow \infty} \frac{\left(\frac{1}{1+\frac{r}{n}}\right) \cdot\left(-\frac{r}{n^{2}}\right)}{\left(-\frac{1}{n^{2} t}\right)} \\
& =\ln P+\lim _{n \rightarrow \infty} \frac{r t}{1+\frac{r}{n}} \\
& =\ln P+r t .
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} P\left(1+\frac{r}{n}\right)^{n t}=e^{\ln P+r t}=P e^{r t}$.

Problem 99

Problem. Find the limit, as x approaches 0 , of the ratio of the area of the triangle to the total shaded are in the figure (shown in the book).

Solution.

Problem 100

Problem. In Section 1.3, a geometric argument was used to prove that

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

(a) Write the area of $\triangle A B D$ in terms of θ (See figure in the book).
(b) Write the area of the shaded region in terms of θ.
(c) Write the ratio R of the area of $\triangle A B D$ to that of the shaded region.
(d) Find $\lim _{\theta \rightarrow 0} R$.

Solution.

